In Situ β-Glucan Fortification of Cereal-Based Matrices by Pediococcus parvulus 2.6: Technological Aspects and Prebiotic Potential

نویسندگان

  • Adrián Pérez-Ramos
  • María Luz Mohedano
  • Paloma López
  • Giuseppe Spano
  • Daniela Fiocco
  • Pasquale Russo
  • Vittorio Capozzi
چکیده

Bacterial exopolysaccharides produced by lactic acid bacteria are of increasing interest in the food industry, since they might enhance the technological and functional properties of some edible matrices. In this work, Pediococcus parvulus 2.6, which produces an O2-substituted (1,3)-β-d-glucan exopolysaccharide only synthesised by bacteria, was proposed as a starter culture for the production of three cereal-based fermented foods. The obtained fermented matrices were naturally bio-fortified in microbial β-glucans, and used to investigate the prebiotic potential of the bacterial exopolysaccharide by analysing the impact on the survival of a probiotic Lactobacillus plantarum strain under starvation and gastrointestinal simulated conditions. All of the assays were performed by using as control of the P. parvulus 2.6's performance, the isogenic β-glucan non-producing 2.6NR strain. Our results showed a differential capability of P. parvulus to ferment the cereal flours. During the fermentation step, the β-glucans produced were specifically quantified and their concentration correlated with an increased viscosity of the products. The survival of the model probiotic L. plantarum WCFS1 was improved by the presence of the bacterial β-glucans in oat and rice fermented foods under starvation conditions. The probiotic bacteria showed a significantly higher viability when submitted to a simulated intestinal stress in the oat matrix fermented by the 2.6 strain. Therefore, the cereal flours were a suitable substrate for in situ bio-fortification with the bacterial β-glucan, and these matrices could be used as carriers to enhance the beneficial properties of probiotic bacteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Draft Genome Sequence of Pediococcus parvulus 2.6, a Probiotic β-Glucan Producer Strain

We report here the draft genome sequence of the probiotic Pediococcus parvulus 2.6, a lactic acid bacterial strain isolated from ropy cider. The bacterium produces a prebiotic and immunomodulatory exopolysaccharide, and this is the first strain of the P. parvulus species whose genome has been characterized.

متن کامل

Probiotic properties of the 2-substituted (1,3)-beta-D-glucan-producing bacterium Pediococcus parvulus 2.6.

Exopolysaccharides have prebiotic potential and contribute to the rheology and texture of fermented foods. Here we have analyzed the in vitro bioavailability and immunomodulatory properties of the 2-substituted (1,3)-beta-D-glucan-producing bacterium Pediococcus parvulus 2.6. It resists gastrointestinal stress, adheres to Caco-2 cells, and induces the production of inflammation-related cytokine...

متن کامل

Characterization of the Sorbitol Utilization Cluster of the Probiotic Pediococcus parvulus 2.6: Genetic, Functional and Complementation Studies in Heterologous Hosts

Pediococcus parvulus 2.6 secretes a 2-substituted (1,3)-β-D-glucan with prebiotic and immunomodulatory properties. It is synthesized by the GTF glycosyltransferase using UDP-glucose as substrate. Analysis of the P. parvulus 2.6 draft genome revealed the existence of a sorbitol utilization cluster of six genes (gutFRMCBA), whose products should be involved in sorbitol utilization and could gener...

متن کامل

Immunomodulation of human macrophages and myeloid cells by 2-substituted (1-3)-β-D-glucan from P. parvulus 2.6.

β-glucans produced by eukaryotic cells and by microorganisms are known to modulate immune responses by affecting macrophage activation. Here, we have investigated the effect of purified 2-substituted (1-3)-β-D-glucan, produced by either Pediococcus parvulus 2.6 or Lactococcus lactis NZ9000[pNGTF], on the effector functions of human PMA-differentiated THP-1 cells and M1 pro-inflammatory monocyte...

متن کامل

Beta-1,3-glucanase from Delftia tsuruhatensis strain MV01 and its potential application in vinification.

During vinification microbial activities can spoil wine quality. As the wine-related lactic acid bacterium Pediococcus parvulus is able to produce slimes consisting of a β-1,3-glucan, must and wine filtration can be difficult or impossible. In addition, the metabolic activities of several wild-type yeasts can also negatively affect wine quality. Therefore, there is a need for measures to degrad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2017